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8-Wave ~-w Scattering Amplitudes in the New Form of the Strip Approximation

P. D. B. CoI,LrNs j'

lawrence Kadiation Laboratory, University of California, Berkeley, California

(Received 30 August 1965)

The new form of the strip approximation devised by Chew is applied to the calculation of the S-wave x-vr

scattering amplitudes, with forces produced by the exchange of p, P, and P' trajectories, and with Regge
asymptotic behavior built in. Because of the sensitivity of the S wave to short-range forces not included in
the strip approximation, a subtraction is made at the symmetry point, so that an extra free parameter X is
introduced, in addition to the strip width. Self-consistency is imposed on the S waves in the direct and crossed
channels; X is related to the scattering lengths for isospin 0 and 2 (uo and u~), and it is concluded that solu-
tions with ~=—0.1 giving uo= 1 and u2 =0.2 are in the best agreement with experiment. But some discussion
is also given to the possibility that eo is negative, there being a bound-state pole of vanishing residue, which
should correspond to the P' trajectory's crossing angular momentum zero.

I. INTRODUCTION
' 'N their original paper on the zr-x scattering ampli-
~ - tude Chew and Mandelstarn' proposed, a method, of
imposing self-consistency on the lower partial-wave
amplitudes of the direct and, crossed channels and ab-
sorbing the high-energy behavior into a single sub-
traction parameter A, which was related to the values
of the various isotopic-spin amplitudes at the symmetry
point s=t=N=-', m '. Their method, had two disad. -

vanta, ges: the partial-wave sum in the crossed. channels
does not converge in the direct channel outside the
Lehmann ellipse, so that only singularities which are
"near-by" in both the variables s and, t could be
includ. ed; and, when it became known that there were
resonances in the x-x system, in particular the p reso-
nance, then the llew//D equations required a cutoff. This
introduced another parameter connected with the high-

energy behavior, but whose relation to A, was not known.
In the intervening years much has been understood

about both these problems, the first in terms of the
strip approximation' which includ. es singularities which
are nearby in one variable but not necessarily in both,
and. the second, , in terms of continuation in angular
momentum, '4 and, the fact that Regge poles in the
crossed. channels control the asymptotic behavior in
the direct channel.

Recently Chew and Jones' have put forward a new
form of the strip approximation which incorporates
both these ideas in a set of bootstrap equations for z-z
scattering. The only free parameter of this scheme is
the width of the strip, s~, the boundary of which marks
the point at which the resonance region is joined to the
region governed by Regge asymptotic behavior.

+This work was performed under the auspices of the U. S.
Atomic Energy Commission.

t Present address: Physics Department, University of Durham,
England.' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 46/ (1960).
For a review of more recent work along similar lines, see K. Kang,i'. 134, 31324 (1964).

~ G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961).' G. F. Chew, S. C, Frautschi, and S. Mandelstam, Phys. Rev.
126, 1202 (196').

4 G. F. Chew, Phys. Rev. 129, 2363 (1963).' G. F. Chew and C. E. Jones, Phys. Rev. 135, 8208 (1964).
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Some preliminary results of boots trapping trajectories
have been reported, ,

' and, in principle, if one wishes to
know about the 5 wave one has only to find a self-
consistent set of trajectories and, then project out the
appropriate partial wave from the amplitude. However,
the 5 wave, involving as it d,oes an unweighted. average
over all momentum transfers, is very sensitive to the
short-range forces, not all of which are includ, ed, in the
strip-approximation. In other words, one can expect the
5 wave to be much more sensitive to the inner regions
of the double spectral functions than the higher partial
waves.

In this paper we follow Chew and, Mandelstam' in
using a subtraction, and imposing self-consistency on
the 5 waves in the direct and crossed channels, but we
shall include the resonances as Regge poles, and impose
Regge asymptotic behavior. Thus, apart from s~, to
which the solutions are insensitive, and, the Regge
trajectory functions which we suppose to be known, '
our results d,epend only on one free parameter A. which
will be related, dynamically, to the I=0, 5-wave scat-
tering length uo. If this one piece of information is
given to us the solution is determined. In practice, of
course, there are consid, erable ambiguities in our input.
The Regge parameters are not well known, but it turns
out that the solution is not greatly affected by the
choice made, providing that unitarity is satisfied. How-
ever, the choice of A. is crucial.

In the next section we d, iscuss the experimental
situation, and various theoretical suggestions as to how
the 5-wave amplitude should behave, In Sec. III we
review the X/D equations, and in the following section,
d,escribe the calculation of the "potential" and, our
choice of Regge parameters. We conclude with a d, is-
cussion of the results as a function of A. .

Solutions with ) around, —0.1, giving an I=O scat-
tering length of about 1.0 and, an l= 2 scattering length
of about 0.2, seem to be in accord with the present

~P. D. B. Collins and V. L. Teplitz, Phys. Rev. 140, 8663
(1965).' R. J.N. Phillips and W. Rarita, Phys. Rev. 139,B1336 (1965),
and Phys. Rev. Letters 14, 502 (1965). We assume that the P'
passes through the newly discovered resonance at 1525 MeV re-
ported by V. E. Barnes et al. , Phys. Rev. Letters 1S, 322 (1965).
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experimental evidence, but solutions with negative
scattering lengths, which have a "bound, -state" ghost
pole corresponding perhaps to the I" trajectory where
it cuts angular momentum zero, are also considered, .
(The scattering lengths are expressed in pion Compton
wavelengths throughout. )

FIG. 1. The I=0
trajectories.

Re
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II. PRESENT EVIDENCE CONCERNING
THE S WAVE

As yet there is no clear evidence as to the nature of
the I=O, S-wave scattering amplitude, but several
indications tend to a similar conclusion, namely, that
the scattering length is large and positive.

Abashian et ul. ' observed an anomalous peak in re-
actions such as

P+d ~ He'+~++~—,

which they explained as being due to a large I=O
scattering length, and Booth and Abashian' find its
value to be uo= 2+1.Hamilton et u/. "have determined
the contribution of the m-m- interaction to the partial-
wave dispersion relations for

vr+S —+ 2s.+F,
and require ao= 1.3+0.4. A discussion of this evidence
is given in Ref. 11. More recently Kacser et u/. "have
obtained a0=1.0+0.3 in trying to fit the Ee4 decay

spectral. IIl.
Contrary to this, however, Rothe" has considered

the forward dispersion relations for x-x scattering itself,
dividing the amplitude into a Regge asymptotic region
whose behavior is controlled by the I' and I" trajec-
tories, and a resonance region fitted. with Breit-signer
formulas, the two regions being matched. at s= 200m, '.
He finds no= —1.7 0.5+".Also Kreps et al. ' ha,ve found
—1.72 in a dynamical calculation. It is hoped, that a
more definite value will be available soon using the
method of Cabibbo and Maksymowicz. "

There is some evidence for at least two S-wave reso-
nances. Brown and Singer" have proposed, a 400-MeV
particle, 0., of width 75—100 MeV, to explain the 3x
deca, y modes of the q and E mesons, and this may
have been observed by Samios et at."The asymmetry

A. Abashian, N. E. Booth, and K. M. Crowe, Phys. Rev.
Letters 7, 35 (1961).

9 N. E. B'ooth and A. Abashian, . Phys. Rev. 132, 2314 (1963}."J.Hamilton, P. Menotti, G. C. Qades, and L. L. J. Vick,
Phys. Rev. 128, 1881 (1962).

~' J. Hamilton, in Strong Interactions and IIigh Energy Physics,
edited by R. G. Moorhouse (Plenum Press, Inc. , New York,
1964), p. 335.

~ C. Kacser, P. Singer, and T. N. Truong, Phys. Rev. 137,
31605 (1965).

"H. J. Rothe, Phys. Rev. 140, 81421 (1965).
'4 R. E. Kreps, L. F. Cook, J. J. Brehm, and R. Blankenbecler,

Phys. Rev. 133, $1526 (1964).
"N. Cabibbo and A. Maksymowicz, Phys. Rev. 137, 438

(1965); A. Maksymowicz (Lawrence Radiation Laboratory)
private communication, 1965.

"L.M. Brown and P. Singer, Phys. Rev. 133, B812 (1964).
"N, P. Samios et a/. , Phys. Rev. Letters 9, 139 (1962).

of the neutral p in decay

has been discussed by Islam and Pinon" in terms of
interference with a 60', I=O, S-wave phase shift at
750 MeV, and by Durand and Chiu" in terms of an
I=O, S-wave resonance with a mass and width similar
to those of the p. Recently Feldman et a/. 20 have re-

ported evidence for such a particle at 700 MeV.
However, S-wave resonances are rather difficult to

understand, , and a calculation of the sort vrhich we are
proposing is certainly not able to produce them because
of the way in which we treat short-range forces by
means of a subtraction, and neglect higher threshold
channels.

An alternative hypothesis has been put forward, by
Chew', " that the S-wave phase shift is in fact falling,
and that the peaks observed or postulated are not
resonances but occur when the phase shift is falling
through an odd half-integer multiple of x. The reason
for believing that this may be so is that the Pomeran-
chuk (P) and secondary Pomeranchuk (P') trajectories
might well pass through angular momentum n=0
(Fig. 1). Indeed the parameters for these trajectories
found by Phillips and Rarita' do cut n= 0, and they say
the trajectories might well have been represented by
straight lines.

So if the I' trajectory passes through s=80m ' at
n= 2 corresponding to the f', and through the Proissart
limit of n=1 at s=0, we may expect it to cut n=O
nea, r s= —80m ', and similarly if the I"passes through,

the newly discovered particle at 120m ' with n= 2 and
has an intercept' of n=0.5 at s=0, then it may cut
n=0 at s= —40m ', though if the trajectories have
much curvature these points could be further to the
left. Of course, at the point where the trajectory cuts
n=0 its residue must vanish, or there would be bound
states in the physical region of the crossed channels,
and at present we have no understanding of the mecha-
nism which causes this vanishing.

Levinson's theorem" implies that for each trajectory
that cuts n=0 the phase-shift 8(s) at threshold is in-

creased by a factor x over its value at . Thus if we

'8 M. M. Islam and R. Pinon, Phys. Rev. Letters 12, 310 (1964).
'~ L. Durand, III, and Y. T. Chiu, Phys. Rev. Letters 14, 329

(1965).
'0 M. Feldman et al. , Phys. Rev. Letters 14, 869 (1965).
2' G. F. Chew, Lawrence Radiation Laboratory (private com-

munication).
"N. Levinson, Kgl. Danske. Videnskab. Selskab, Mat. Fys.

Medd. 25, No. 9 (1949).
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FIG. 2. Possible
form for I=0, S-
wave phase shift ver-
sus energy.

L(s—4)j/sli". Setting

&o(so) =A

Do(so) = 1, (111.5)

and combining (III.2), (III.3), and (III.4), we obtain
the subtracted, equations

normalize 8(oo) =0, then we expect b(4) = 27r if both I'
and I" cut o.=0. The D function" would have two
zeros below threshold, at the points through which the
trajectories pass, and two further zeros (of the real part
of D) above threshold as the phase shift comes down
through —,P~ and m/2. See Figs. 2 and 3. The fact that
the E function wouM, also have to vanish at the two
zeros below threshold, so that real bound states do not
occur, does not affect this argument. Such a situation
would, require a negative scattering length L=Xp(4)/
ReDp(4) j. In fact, as we shall see, it has only proved
possible to produce a D function with one zero below
threshoM.

IH. THE SUBTRACTED N/D EQUATIONS

We set the 5 partial-wave amplitude'4

A p(s) =Xp(s)/Dp(s), (III 1)

1 " 1mLDp(s') 7
Dp(s) = 1+— ds'

4 s —s
(III.3)

where Bog(s) is the "potential" function to be discussed
in the next section. With elastic unitarity

ImDo(s') = —pp(s)Xp(s), (III.4)

where pp(s) is the phase-space factor and is equal to

FIG. 3.Hypotheti-
cal Ã and D func-
tions corresponding
to Fig. 2.

~ G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963);
R. J. Warnock, i'. 131, 1320 (1963).

~ Our notation follows that of Refs. 1 and 5. We use units of
m =1 throughout.

where Ep(s) has the left-hand cut of Ap(s), and its
right-hand cut for s)si, and Dp(s) has the right-hand
unitary cut for 4&s(s&, s& being the boundary of the
strip. We can write the usual dispersion relations4

rV p (s) Bp"(s)Dp(s)—
1 'i ImLBo" (s')Do(s') j

ds (III.2)
s —sI

(s—sp)
Xo (s) =A+Bp" (s) Bp"(—sp)+-

and

"Bo"(s') —Bp"(s)
X po(s'))Vp(s') (III.6)

(s'—s) (S'—sp)

(s—sp) "ds'po (s')iV o(s')
Dp(s) = 1—— . (III.7)

(s' —s) (s'—sp)

Thus, given a potential function Bo"(s), we can solve
the integral equation (III.6) for Ep(s) and then use
(III.7) for Dp(s).

As in Ref. i w'e take sp to be the symmetry point
Sp= Ep= sp= 3. The isotopic-spin amplitudes at the sym-
metry point are related, by'

Ao= —5X A'=0 Ao= —2X, (III.g)

the superscripts referring to isotopic spin, and P being
some constant. We shall make the approximation of
setting the amplitud, e at the symmetry point equal to
its lowest partial wave. In particular,

Ap(so, to,lo) =A op(sp) and A'(sp, to, uo) =Ao (so) ~ (III 9)

Chew, Mandelstam, and Noyes'5 found, that ad,ding
higher partial waves (principally the D wave in these
cases) made very little difference. "

The subtraction constant A'=—1Vp(sp)/Dp(sp) is dy-
namically related to the scattering length ap:Xp(4)/
ReDp(4), and could thus be fixed if we had a reliable
estimate of the I=O scattering length. Note, however,
that because of the cusp in the D function at threshold,
there may well be a considerable d,iscrepancy between
up and. A'. In practice we shall express our results as
functions of X, and the relation (III.g) will be needed
to relate the solutions for I=0 to those for I= 2.

The integral equation (III.6) is solved by matrix
inversion. Since the potential function Bo"(s) has a
logarithmic singularity at s=s&, the equation is not
I'redholm. Chew" has shown how to transform the
unsubtracted integral equation into a Fredholm form,
and this transformation has been programmed. ""
However, this transformation cannot be used as it
stands for the subtracted equation, and, in any case it

~' G. F. Chew, S. Mandelstam, and H. P. Noyes, Phys. Rev.
119, 478 (1960).

2' G. F. Chew, Lawrence Ra,diation Laboratory (private com-
munication).

27 G. F. Chew, Phys. Rev. 130, 1264 {2963).
~' V. L. Teplitz, Phys. Rev. 137, BI36 (1965).
~' D. C. Teplitz and V. L. Teplitz, Phys. Rev. 137, 3142 (1965).
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requires a large amount of computer time. Jones and
Tiktopoulos" have shown that if the norm of the
kernel (in this case the coefficient of the logarithmic
singularity) is less than one then matrix inversion can
still be used despite the non-Fredholm nature of the
equation. This point is discussed, further in the next
section.

IV. THE POTENTIAL

The potential which we use has two parts: contribu-
tions from the exchange of Regge trajectories, i.e., p,
I', and P'; and the force from the cross-channel S
wave, which w'e include in a self-consistent way. Simply
to add these two parts would be to include some con-
tributions twice in the S-wave amplitude, but this
double counting can be avoided by means of the
"normaliza, tion" procedure of Chew and Teplitz. "

The isotopic-spin crossing matrix for 7r-z scattering is

so we have

'1/3 1 5/3
P"= 1/3 1/2 —5/6

.1/3 —1/2 1/6.
(IV.1)

Bo"($)= sBo' ($)+sBo'"($)+Bo'($)
+3Bo"($)+(3/3)Bo"($) (IV 2)

and

B ))2($) xB PN($)+iB P N($) iB p($)

+-',Bo ($)+-',B0"($) (IV.3)

where Bo'I($) is the contribution from the cross-channel
S wave of isotopic spin I, and the remaining contribu-
tions are from the exchange of the trajectories. The
superscript X means that the trajectory contribution
has been normalized.

Chew and Jones' have given formulas for calculating
the contributions of the trajectories, and we have, from
Ref. 6 Eq. (10),

0

Bp'($) = r (t)
—4Qtt

dQ r
a(t) I

4@i~ u —$

u
I+I (t)&

2q,2)

dl
( ~+(&)

4„u'—I
u )

2q ')

u ' ) du'

2qi 21u —t
)'()')P (;)(.

I

s I'(t) —
( $ ) / $ )—

+ . &P-«&! —1— I+P-«&I 1+, I
. (IV 4)

sinter(t) k 2qPI 4 2qPf

+4 (s)
iN dtI'I, 1+

4qe

&( [V'(t,$)—V'(t,0)], (IV.6)

where V'(t, $) is the expression in brackets ( } in

(IV.4) for trajectory i

"C. E. Jones and G. Tiktopoulos, Princeton University un-
published report, 1965."G. I'. Chew and V. L. Teplitz, Phys. Rev. 137, B139 (1965)."P. D. B. Collins, following paper, Phys. Rev. 142, 1163 (1966).

This is simpler than Ref. 6 Eq. (10) because of the
restriction. to even signature (in the $ channel) and
angular momentum 0. f(=+1) is the signature of the
exchanged trajectory (in the t channel), and

I'(t) = [2~(t)+13(—qP) ("v(t), (IV 3)

n(t) being the trajectory function and y(t) the reduced
residue.

For the p trajectory, which being of negative signa-
ture has no S-wave component (in the t channel), we

can use (IV.4) as it stands. For the P and P', however,
it is necessary to "normalize. " The effect of this pro-
cedure will be described in greater detail in a forth-
coming paper, " but in brief what we do is subtract
from the potential its contribution at s=0.

Thus

V(t,0) can be represented by an expansion of the t

channel discontinuity in a partial-wave series. Thus"

1 "dt'
V(t,$) =— D, (t',$)

4

(IV.7)

and

" dt'
E(2«+1)

~4 t' —t~&
$

XimA „(t')P„I 1+ ! (Iv.g)
2q, ')

1
V(t,o) =- P(2t,+1) ImA„(t'). (IV.9)

4
t' —t~i

If the S wave dominates this sum, as one may establish
by comparing it with the D wave represented by the fo
resonance with the experimental mass and width, then

1 "dt
V(t,0)=—

4

ImA o(t') . (IV.10)

Thus by using 80' instead of Bo', when i refers to the
I' or I" trajectories, we have removed the contribution
of these trajectories to the S-wave discontinuity, and
are free to add to the potential the full contribution of
this partial wave determined self-consistently, i.e., by
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ImA (, (s) = ImA (,(s) .

0.5

Then

Q !I1+, 11mAor(t) (IV.11)
4 2q82 4 2qs~

to the otential from the isospinis the contribution to t e po
I(=0 or 2) 5 wave. The factor 2 comes rom a, in
contributions of the t and I channels.

We not e that
~.(t)

P"(t)+I.R D.(t)P".(t)j'

Th

n = 1 for t=28 u =0 5 for t=0,
t=80

o,p =0.5 for t=0; O.p. ——2 for t=

p d' t the knov n particle massses and thecorrespon ing o
ef. 7. The remaining parameter, th pr the ole

h t jectones faHposl loni't' vras chosen to make t e ra
rapidly.

and Do(t) and tVO(t) are obtaineed as solutions to the

from thrcshoM to ~,'but we ony ne
a ole a roxiination, vv ict&0. K take a po pp

d ade uatein thepastforn, 'an s ou a s
for y.4 It turns out that t e so u io

n the I'cclsc choice of parameters. c I'cpendent on e p
quoted in the following section use e

u, = —1.5+2.0/(1 —t/140),

y p
=0.01/(1 —t/100) (24)'

~ = —1.O+2.O/(1 —t/24O),

y p ——0.007/(1 —t/100) (24) '—&'&n (t),
ap ———1.752+2.251/(1 —t/100),

&,.= O. 142/(1 —t/1OO) (24)'~'-. &'»n(t) .

ese have been chosen so that

ol ) since sy++4)

Now'

ImB0"'(sg)

ImBO" (sg) ~(1. (IV.16)

Ct s'F, (t)P;to i

—1— i, (IV. )
2gP1+1 —4 Col

e P P' and p trajectories, andthe sum running over the I',
er the larger are u'(t anthe expression is sma er, g

Kith the parameters quoted from IV.2 an

O, I

3

0.5
OQ

0.3

I—

o -OI
-0002
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-I
0 4

I

IO 20 40

—0.5
-0.3

S

s cot800(s versus s orf r exchange of dementary p
d I=OS:-;.,=2%of width 0.7m an

g»S4 (I964)."0 I& Chew and P. L. Teplitz, Phys. Rev. D6, 8 (~ ~

y, was chosen so that y, (28)/a, '(28) corresponds' to

ef. 7 and the factonzation efindings of Re . a

at residues of P an

rithmic der~vat~ve of the potentia co«espon
x-m- diffraction pea

'
f

'
this criterionA t from the desirability of satis ying iApart rom

hat the functions will correspond o
b

sot a e ond o
values as closely as possi e, i

potential, making solution of t e
impossible.

4" the potentialAs has been discussed previous y, ~

(IV.4) has a logarlthlIllc slllgularltvcalculated from
at sI, such that

Bo"(sg) -+ —(1/s.) ImBO" (sg) ln(sg —s) IV.13
8~81

and
I ~"( ) = "~ ( )/~. ( ),m o g= ' ' sg (IV.14)

0
'

th 5- phase shift. Thus if unitarity
uire that

where 80(s) is the -wave p ase
is not to be violated at sy me requi

IV.15)"( )I ~."( )&I,
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we find, for s~=200,

and
ImBp"" (si) =0.9531

1mBp"P (si) =0.4002,
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FIG. 6. -5Xpo(s) cotta'(s) versus s for exchange of Reggeized p,
I', and I"with I=0 g wave; s&

——200.

34 G. I'. Chew, Lawrence Radiation Laboratory Report UCRL-
16101, 1965 (unpublished)."E, S. Abers and V. L. Teplitz, (unpublished CERN report,
1965).

which is close to the limit. If unitarity is violated at s~

the norm of the kernel is greater than 1 and the X/D
equations cannot be solved by matrix inversion. "Thus
even though the behavior of the amplitude at s near s~

is of no interest to us in these subtracted X/D equa-
tions, whose solutions do not depend on distant singu-
larities, it is still necessary to ensure that the potential
does not violate unitarity at s~.

The contribution of the p to the potential is much
greater than that of the P and P', and very similar
results are obtained if the latter are neglected. It is also
interesting to compare the effect of exchanging a p
Regge trajectory with tha, t of exchanging an elementary
(fixed spin) p. It is well known"" that there are
ambiguous zero-range components in the fixed-spin
potential which affect only the S wave. However, the
approximation is often made of neglecting these zero-
range parts and taking

Bpp"=3m, g(1+s/2g ')Q (1+ms '/2q ')/q ' (IV.18)

where g is the width of the p (in m, ). This potential is
rather different in its energy dependence from the
Regge form, whose principal term is an average in t

over I'(t)E to[—1—s/2q~']/sinwn(t) from t=0 to
—4q, ', and which goes almost to zero at the symmetry
point, whereas (IV.18) has these factors evaluated at
1=m,'. This difference is not very important in our
calculation because the low-s part of Bp"(s) comes
mainly from Bp'(s). Also the subtraction will remove

any dependence of the solution on the short-range com-
ponents included in the Regge form.

It is possible to use (IV.11) as it stands to obtain the
potential at the subtraction point, Bp'(sp) but (IV.4)

0.05— 0. 3-0.5

0-

—0.5
0 (00

S ( ms~)

150 200

I'IG. 7. The I=0, S-vrave phase shift 80 (s) versus s for the
Reggeized p, I', I" input; sI= 200.

cannot be used for s(4. Instead we obtained Bp'(sp)
by extrapolation from the values for s&4.

V. DISCUSSION OF THE RESULTS

Our method of solution is to begin with Bp"'(s) as
given by the trajectory contributions to (IV.2) only.
The iV/D equations are then solved with a chosen
value of X, and BOP(s) calculated from (IV.11) and
(IV.12). Adding this to Bp"'(s) a new solution was ob-
tained, and after four or five such cycles the solution
was stable. Bp"(s) was neglected as small. The resulting
form of Bp~(s) was used in (IV.3) to obtain solutions
for I= 2.

For comparison we repeated the calculation with the
S-wave potential alone, and also with the elementary

p potential instead of the Regge potentials.
In Figs. 4—6 we plot the function —5Xpp(s) cot5p'(s)

= —5X[keD(s)/N(s)] against s for a range of values
of X for the three different types of input potential. For
the S wave alone, results very similar to those of Ref. 1

were obtained except for X= —0.5 and —0.3, where the
P wave gave an important contribution. The Regge
input gives curves similar in form to those for elemen-
tary p except for i%=0.1, where the zero of the E func-
tion (and hence of the phase shift) occurs at a much
lower energy for the latter input.

The phase shifts for the Regge case are plotted in
Fig. 7. They are constrained in each case to h(s, )
=0.43m by the imposition of Regge asymptotic be-
ha, vior, and in fact closely approach this value for
s=100 except for X.=0.1. This value of X is close to
that for which a bound state appears at s= —~ and
Spp(0) jumps from 0 to ~. It is dificult to estimate
closely the value of 'A for which the bound state appears
because we cannot calculate the D function with the
requisite accuracy for very large negative s, but it
certainly exists when X has reached 0.14. This pole
becomes less bound as X increases, and reaches a position
where it might be identified with the E' (say) for
&=0,24 to 0.30, i.e., s= —109 to —44,
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But if the potential function mere to have a suitable
behavior to make X(—44) =0, the solution of the X/D
equations in the strip region, 4&s&sI, mould be very
little changed because of the subtraction. Or, inverting
this argument, our solution does not determine E for
points a long way outside the strip with any accuracy.
However, for this value of ) the I=2 amplitude also
has a bound-state pole, as Fig. 10 shows, though again
it is not possible to determine its position except that
it is at s& —300. Since no I= 2 trajectories are known,
it seems that such solutions must be wrong. If the
scattering length is to be —1.7 we require a very large
X(=40), and the f. =0 bound-state position at s=0.56

is too close to the symmetry point to be identified with

any known trajectory.
According to our present information the best solu-

tion is that with ) = —0.1.
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The new form of the strip approximation is used to obtain mutually self-consistent trajectories with
isopin I=O and I=1 in the m-m system. However, these trajectories do not correspond to those which are
obtained from experiment, and violate unitarity in the asymptotic region. The trajectories obtained from
experiment, which satisfy unitarity, are shown not to produce sufBcient strength to bootstrap themselves.
Also the I=O trajectory gives rise to a repulsive potential, and to obtain a solution of the N/D equations
we are impelled to the doubtful assumption that this repulsion is completely cancelled by other I=O tra-
jectories that do not reach the right-half angular-momentum plane. It is concluded that both these di6iculties
stem from the fact that the potential is included only in the 6rst Born approximation, and that more satis-
factory results would be forthcoming if the potential were iterated in the way proposed by Mandelstam.

I. INTRODUCTION

'HE new form of the strip approximation has been
proposed" as a method of calculating scattering

amplitudes in accordance with the principles of maxi-
mal analyticity of the erst and second kinds. The
amplitudes are constructed so that they satisfy the
Mandelstam representation, and all their poles are
Regge poles. Such. amplitudes wiQ have the correct
behavior in the lorn-energy resonance region where the
poles dominate, and also in the high-energy region
where Regge asymptotic behavior is observed. It is
hoped that these features include enough of the dy-
namics for the amplitudes to be self-consistent in the
sense that the "potential" due to the crossed-channel
singularities generates the direct-channel singularities.

For the x-x amplitude, in which identical processes
occur in the direct and crossed channels, this self-

consistency amounts to a "bootstrap" requirement. The

*This work. was done under the auspices of the U. S. Atomic
Energy Commission.

f Present address: Physics Department, University of Durham,
England.' C. F. Chew, Phys. Rev. 129, 2363 (j.963).' G. I". Chew and C. E. Jones, Phys. Rev. 135, B208 (1964).

dominant Regge trajectories, p, I', and I" should
bootstrap themselves.

Chew and Jones' have devised a set of equations for
investigating this possibility using the X/D method,
with the X function having the cuts of the potential,
and the D function the unitarity cut in the strip region.
Results have already been reported' for a self-consistent

p trajectory, but the p potential also generated an I=0
trajectory which mas not included in the potential. In
this paper we complete the solution by obtaining a pair
of mutually self-consistent trajectories, one having I=0
and the other I=1. However, these trajectories have
several unsatisfactory features, and we are led to dis-
cuss some deficiencies of the new form of the strip
approximation, and how they might be rectihed.

In the next two sections the 1VjD equations and the
method of calculating the potential from the exchange
of Regge trajectories are reviewed. The fourth section is
devoted to a discussion of the potential for I' exchange,
which is repulsive. The total potential for I=0 exchange
may be made attractive by means of a "normalization"

'P. D. B. Collins a,nd P. T„. Tephtz, Phys. Rev. 1/0, 8663
(1965),


